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Dynamics-based sequential memory: Winnerless competition of patterns
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We introduce a biologically motivated dynamical principle of sequential memory which is based on win-
nerless competitioWLC) of event images. This mechanism is implemented in a two-layer neural model of
sequential spatial memory. We present the learning dynamics which leads to the formation of a WLC network.
After learning, the system is capable of associative retrieval of prerecorded sequences of patterns.
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The ability to process sequential information has longtions. Accordingly, they suffer from difficulties typical for
been seen as one of the most important functions of livingHopfield-type networks: the abundance of spurious attractors
and artificial intelligent systems. In spite of the long history (sequences complex structure of attractor basins, and sen-
of studies of sequential learning and memory, little is knownsitivity to noise. Furthermore, these models are based on
about dynamical principles of learning and remembering ofdynamical equations with memory, which is difficult to jus-
multiple events and their temporal order by neural systemdify biologically.

Here we propose a dynamical principle winnerless com- A dynamical model of the sequential spatial memory
petition (WLC) that can be the basic mechanism of the seshould be based on the following experimental facts. First,
quential memory. The essence of the idea is that the sequethere is a clear separation between neurons directly respond-
tial memory is encoded in a multidimensional dynamicaling to Specific stimuli(we call them sensory neurons, BN
system with a complex heteroclinic trajectory connecting agn( hyppocampal cells in CA1 and CA3 regiofpsincipal
sequence of sa_ddle points. Each of the saddle points repreeurons, PN The PN fire in response to a combined vector
sents an event in a sequence to be remembered. The specifiCsimuli corresponding to a particular event. Second, while
structure of the phase space is such that each saddle politnsory neurons are not directly connected to each other, the

BNs are coupled via inhibitory connections controlled by in-
direction. All saddle points are unidirectionally connected by, P y y

. ) . t?rneurons. Third, the synaptic connections among PNs and
these one-dimensional unstable separatrices. Once the St%gtween PNs and SNs exhibit Hebbian long-term potentia-

of the system approaches one fixed point representing a cer-

tain event, it is drawn along an unstable separatrix toward thgOn [6.7). Based on these features of.the hippocampal net-
" 1work, we propose a two-layer dynamical model of the se-

such heteroclinic structure is determined by specific asymduential spatial memory(SSM) that can answer the

metric inhibitory connections between neurons within thefollowing key questions(i) How is a certain evente.g., an
WLC neural network. These connections are formed by théMage of environmentrecorded in the structure of the syn-
sensory inputs caused by sequential events in a sequence@Ptic connections between multiple SNs and a single PN
In this paper, we demonstrate this principle in a model ofduring learningii) What kind of the cooperative dynamics
the spatial sequential memory in the hyppocampus. It is welforces individual PCs to fire sequentially, which would cor-
accepted that the hippocampus plays the central role in a¢espond to a specific rout@ sequence of scenes the
quisition and processing of information related to the repreenvironment?iii) How complex should this network be to
sentation of physical space. The most spectacular manifestatore a certain number of different episodes without mixing
tion of this role is the existence of so called “place cells” different events or storing spurious episodes?
which repeatedly fire when an animal is in a certain spatial Let us discuss the learning objectives which would lead to
location [1]. While much effort has been spent on experi-formation of the sequential SSM. The first objective is to
mental search and modeling of the so called “cognitivelearn a projection map: as a result of unsupervised learning
map” [2] as a paradigm for spatial memory, recent neurothe image of a particular environme(snapshotencoded by
physiological research favors an alternative concept of spaieightened activity of the group of SNs leads to the height-
tial memory based on a linked collection of storegisodes ened activity(firing) of just one PN(see Fig. 1 The second
[3]. Each episode comprises a sequenceewdntswhich,  objective is to learn the temporal sequence of images. This
besides spatial locations, may include other features of enviczan be achieved by modifying inhibitory connections among
ronment(orientation, odor, sound, ejcEach distinct event PNs due to long-term potentiatiqsee, e.g., Refl6]). The
is accompanied by time-locked activity of a certain hippoc-resulting structure of the phase space for the PN layer will
ampal cell. Dynamical modeling of the emerging concept ofexhibit features of the winnerless competiti8]. After the
the episodic memory is of apparent general interest for neuearning is completed, the neural network should be able to
roscience. Several models of associative sequential memorgproduce a specific route following a starting pattern.
have been proposed in the literatyrd. Most of them are The two-layer structure of the SSM model is reminiscent
based on the generalization of the Hopfield associativef the projection network implementation of thermal form
memory networK5] to include asymmetric synaptic connec- projection algorithm(NFPA) [9]. In that model, the dynam-
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3 ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘ white noise uniformly distributed between 0 amdhowever,
in reality it can represent input signals from other parts of the
brain which control learning and retrieval dynamics.

After a certain pattern is presented to the model, the sen-
sory stimuli reset the state of the PN layer according to the
projection ruleaizE;\'ijExj , but thena; change according
to Eq. ().

In addition to the dynamics of SNs and PNs during learn-
ing and retrieval phases, we need to introduce two learning
processesti) forming the projection matri;; which is re-
sponsible for connecting a group of sensory neurons of the
first layer corresponding to a certain stored pattern to a single
principal neuron which represents this pattern at the PN
1000 2000 3000 2000 level; (ii_) learning of the com_petition matri)(/”- which is

Time responsible for the temporébgical) ordering of the sequen-

. - tial memory.
FIG. 1. The strengths of the connection coefficients between the Projection matrix The slow learning dynamics of the pro-

flf)ns:;¥ai:1:tetlhseOargzi?;t:gﬁia)—aég% vmthlnl?eap_n;cnzeil ;a%/er jection matrix is controlled by the following equation
. s— ] p_ [l - 4y T &Y,y

V;=0.9, e=0.01, 0= 10"*, 7=480.

Pij= €eai(Bx;— Pyj). 2
ics of the network is cast in terms of the normal form equa-
tions which are written for amplitudes of certain normalwith e<1. We assume that initially alP;; connections are
forms which correspond to different patterns stored in thenearly identicalP;;=1+ 7;, where »; are small random
syste_m. The nqrmal form dynamics can _be chosen to fono%erturbationszj 7;=0, <77i2_>: 77%<1_ Additionally, we as-
certain dynam|callrules, for example_, n R¢B] it was .. sume that initially matrixv:- is purely competitiveV;;=1
shown that a Hopfield-type network with improved capamtyandv” —Vo>1 fori] !
can be built using this approach. Furthermore, in RR&F it Colrllsideor a scenario. when we want to “memorize” a cer-
was proposed that specific choices of the coupling matrix fOEain patternA in our projection matrix. We apply a set of
the normal form dynamics can lead to multistability among.nputSA_ corresponding to the pattem'to the SNs. As be-
more complex attracting sets than simple fixed points, suc ore, weI assume that external stimuli render the .SNs in one

as limit cycles or even chaotic attractors. As we will see . : :
below, the model of SSM after learning is completed can bé)f. FWO states: excitedA;=1) and _qwescentﬁ(l_ 0). The
) . . o : initial state of the PN layer is fully excited a;(0)
viewed as a variant of the NFPA witim specific choice of . - .
. X . =>.P;;A.]. According to the competitive nature of interac-
normal form dynamics corresponding to the winnerless ComfionjofJPIJ\Is after a short transient, only one of théveuron
petition among different patterns. » only

Consider a two-level network dfig SN x; andN,, princi- A) which corresponds o mgxmymi(O) remains excited
S s p and others become quiescdirthibited. Which neuron be-
pal neuronsy; . Similar to the projection network modgd],

we assume that sensory neurons do not have their own dyomes responsible” for the pattewh is actually random, as

namics and are slaved to either external stimuli in the Iearn)(t depends on the initial projection matrf; . As it follows

ing (or storing regime, or to the PNs in the retrieval regime. from Eq.(2), for small € “synapses (.)f suppregsed PNs do
. . _ . . . not change, whereas synapses of (giagle excited neuron
In the learning regimex;=1; where{l;} is a binary input . .
o ; ; ; : evolve such that the connections between excited SNs and
pattern consisting of 0’s and 1's. During the retrieval phase . )
—sNo b 2 whereP. is the N.X N. proiection matrix PN; neurons ampllfy towargd>1, and connectlor) between
Xi= 22y e 1 s Np Proj excited PNs and quiescent SNs decay to fsee Fig. 13)].
of connections between SNs and PNs. As a result, the first input pattern will be “recorded” in one

The PNs are driven by SNs during the learning phase, but the rows of the matrix@;; , while other rows will remain

they also have their own dynamics controlled by inhibitory 5most unchanged. v

interconnectiongsee above After the learning is finished, Now suppose that we want to record a second pattern
for the amplitudes of PNsg;, read described in the preceding paragraph, namely, apply external
Np Nq stimuli (patternB) to the SNs, “project” them to the initial
a—a—-a> V.a+aa PIx.+ £(1), 1 state of the PN Iaye[r_ai(0)=21-|_3”-Bj], and let the system
o '121 e '121 X+ @) evolve. Since synaptic connections from SNs suppressed by

the first pattern to neuroA have been eliminated, a new set
wherea#0 in the learning phase, ang=0 in the retrieval  of stimuli corresponding to patter® will excite neuronA
phase. We use the transposed projection mﬁ}jimssuming weaker than most of the others, and competition will lead to
that the coupling between SNs and PNs is bidirectional andelection of one principal neurd differentfrom neuronA.
symmetric. The last term in the rhs of E(l) represents In such a way we can record as many patterns as there are
small positive external perturbations which we model asPNs.
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New initial conditions projected
from secondary neurons \ ﬂ ﬂ m
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Competition matrix The sequential order of patterns re-
corded in the projection network is determined by the com-
petition matrix V;; . Initially it is set to Vj;=V,>1 for i
#J andV;; =1 which corresponds to winner-take-all compe-
tition. The goal of sequential spatial learning is to record the
transition of patterm to patternB in the form of suppressing
the competition matrix elemeng,. The slow dynamics of
the nondiagonal elements of the competition matrix are con-
trolled by the delay-differential equation a

i
j-

Sr‘r‘r

| bP
B

Vij=eai(t)a;(t—71) (V1= V). (€©))

=
L J JJ JdbJd

As seen from Eq(3), only the matrix elements correspond-
ing to a;(t)#0 anda;(t—7)#0, are changing towards the
asymptotic value/;<<1 corresponding to the desired transi- %0
tion. Since most of the tim@except for short transientsnly

one of the principal neurons is excited, only one of the con-
nectionsV;; is changing at any timgsee Fig. 1)]. As a 04
result, an arbitrarynonrepeating sequence of patterns can gy = 0o o e s s
be recorded. If, after a series of nonrepeating patterns, we ¢, 'f [ T T [ | [
show the first pattern again, the “loop” of heteroclinic con- ' , ‘ ' - ' , ‘
nections will be closed and the system will be able to repro-
duce a repeating sequence of patterns in a cyclic manner. %

If the dimension of the secondary laydt permits, it is a
easy to record into the network more than one sequence of *
patterns. To avoid a spurious connection between the se- ¢
guences, the time interval between the last pattern of the first a,
sequence and the first pattern of the second sequence shoulc °
be greater tharr. 7

In Fig. 1 we show the simulation results for a slow dy- 4
namics of weightsP;; andV;; during a learning phase in a : : : : : ; : :
network with 588 sensory and 10 principal neurons éor 9 . . . . . ]
=0.01. As stored patterris we take ten digits 0. . . ,9rep- a ' ' ' ' ' ' ‘ E%
resented as 2428 pixel dithered images. Two loop se- 500 1200 1800 2400 3000 3600 4200 4800 5400
guences of patterns have been presented: “0,” “1,” “2,” and ime
“6,” “7,” “8,” “9.” Note that these images are not precisely
orthogonal to each other, and yet the system is able to asso
ciate them to different PNs. While a certain pattern is pre. sented,(b) aperiodic retrieval with modulated inhibition. Param-
sented to the SN layer, certain matrix coefficieRts decay, eters of simulations are the same as in Fig. 1.
some othefconnecting excited neurons of the sensory layer
and a single excited neuron of the PN Ilgyapproach 2.5 “state” is determined by the magnitude of external perturba-
and remaining connections remain almost unchanged. After ions o. For 0=0, the system would asymptotically ap-
switch from one pattern to the next in a sequence the corregroach the separatrices and so the durations of each state
sponding matrix coefficienV;; decays to a low valu&/;  would grow indefinitely. For a finiter, the duration of each
=0.9. state scales asIno.

Now, presenting a test pattein“resembling” one of the In the above example, patterns are retrieved from the spa-
recorded patterns to the sensory layef(0)=T(i), a;(0) tial memory periodically in time. However, it may be desir-
=2iPijTTJ-], will initiate a periodic sequence of patterns able for a system to be able to control the duration of indi-
corresponding to the previously recording sequence recordeddual patterns in the sequence. This can be easily achieved
in the network. Figure @ shows the behavior of the prin- by modulating the overall strength of inhibitory connections
cipal neurons after two different initial patterns have beenv;;+A(t). While A(t)>1-V;, all fixed points are stable
presented, one resembling digit “0” and another resemblinghodes, and so a single principle neuron keeps firing. In order
digit “6.” In both cases, the system quickly settled onto ato advance to the next patter(t) is suppressed to zero for
cyclic generation of patterns associated with a given test pa&a short period of tim¢O(—In o)]. An example of such non-
tern. At any given time except for a short transient timeperiodic retrieval of images is shown in Figb2
between the patterns, only a single principal neuron is “on,” In conclusion, we introduced a principle of operation for
which corresponds to a particular pattern. The order in whichhe sequential memory which is based on the winnerless
the principal neurons are turned on is completely determinedompetition and illustrated it in the model of the sequential
by the structure of the WLC matri¥;; . The duration of each spatial memory in hippocampus. It is embodied in the two-
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FIG. 2. Amplitudes of principal neurons during the memory
retrieval phase(a) periodic retrieval, two different test patterns pre-
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layer neuronal structure with the first layer serving as a senfor route replays during sleep. Of course, our model only
sory input for the second layer which performs winnerlessdescribes a generic mechanism of sequential memory, in real
competition among representative principal neurons. We inbiological systems neurons generate nonstationary spike
troduced the learning rules for the projection and the compelfains and synaptic dynamics is time dependeete Refs.
tition matrices which lead naturally to the desired function ofL/-10)- Moreover, instead of a single PN a given pattern can

the network. We also demonstrated that external perturb 'heergﬁlﬁﬁgfgtggi|?tyg$utﬁe0fmneenlﬁgs ,Amh;ﬁzsvgogéig;glrg g?e
tions can influence the timing of the transitions among theti(%ns will be addressed in our future work.
stored patterns, however, the sequence of patterns is robus

agqinst external pertu.rbations._Th(.a model can operate in two The authors gratefully acknowledge support from the En-
regimes: externally timed switching controlled by global gineering Research Program of the Office of Basic Energy
modulation of inhibitory connections and spontaneous periSciences at the U.S. Department of Energy, Grant No. DE-

odic switching between patterns. The latter can be relevarfG03-96ER14592, and from NSF Grant No. EIA-013708.
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