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Dynamics-based sequential memory: Winnerless competition of patterns
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We introduce a biologically motivated dynamical principle of sequential memory which is based on win-
nerless competition~WLC! of event images. This mechanism is implemented in a two-layer neural model of
sequential spatial memory. We present the learning dynamics which leads to the formation of a WLC network.
After learning, the system is capable of associative retrieval of prerecorded sequences of patterns.
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The ability to process sequential information has lo
been seen as one of the most important functions of liv
and artificial intelligent systems. In spite of the long histo
of studies of sequential learning and memory, little is kno
about dynamical principles of learning and remembering
multiple events and their temporal order by neural syste
Here we propose a dynamical principle ofwinnerless com-
petition ~WLC! that can be the basic mechanism of the
quential memory. The essence of the idea is that the seq
tial memory is encoded in a multidimensional dynamic
system with a complex heteroclinic trajectory connecting
sequence of saddle points. Each of the saddle points re
sents an event in a sequence to be remembered. The sp
structure of the phase space is such that each saddle
can have many stable directions but only a single unsta
direction. All saddle points are unidirectionally connected
these one-dimensional unstable separatrices. Once the
of the system approaches one fixed point representing a
tain event, it is drawn along an unstable separatrix toward
next fixed point, and so on. The existence and stability
such heteroclinic structure is determined by specific as
metric inhibitory connections between neurons within t
WLC neural network. These connections are formed by
sensory inputs caused by sequential events in a sequen

In this paper, we demonstrate this principle in a mode
the spatial sequential memory in the hyppocampus. It is w
accepted that the hippocampus plays the central role in
quisition and processing of information related to the rep
sentation of physical space. The most spectacular manife
tion of this role is the existence of so called ‘‘place cell
which repeatedly fire when an animal is in a certain spa
location @1#. While much effort has been spent on expe
mental search and modeling of the so called ‘‘cognit
map’’ @2# as a paradigm for spatial memory, recent neu
physiological research favors an alternative concept of s
tial memory based on a linked collection of storedepisodes
@3#. Each episode comprises a sequence ofeventswhich,
besides spatial locations, may include other features of e
ronment~orientation, odor, sound, etc.!. Each distinct event
is accompanied by time-locked activity of a certain hippo
ampal cell. Dynamical modeling of the emerging concept
the episodic memory is of apparent general interest for n
roscience. Several models of associative sequential mem
have been proposed in the literature@4#. Most of them are
based on the generalization of the Hopfield associa
memory network@5# to include asymmetric synaptic conne
1063-651X/2003/67~1!/011905~4!/$20.00 67 0119
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tions. Accordingly, they suffer from difficulties typical fo
Hopfield-type networks: the abundance of spurious attrac
~sequences!, complex structure of attractor basins, and se
sitivity to noise. Furthermore, these models are based
dynamical equations with memory, which is difficult to ju
tify biologically.

A dynamical model of the sequential spatial memo
should be based on the following experimental facts. Fi
there is a clear separation between neurons directly resp
ing to specific stimuli~we call them sensory neurons, SN!
and hyppocampal cells in CA1 and CA3 regions~principal
neurons, PN!. The PNs fire in response to a combined vec
of stimuli corresponding to a particular event. Second, wh
sensory neurons are not directly connected to each other
PNs are coupled via inhibitory connections controlled by
terneurons. Third, the synaptic connections among PNs
between PNs and SNs exhibit Hebbian long-term poten
tion @6,7#. Based on these features of the hippocampal n
work, we propose a two-layer dynamical model of the s
quential spatial memory~SSM! that can answer the
following key questions.~i! How is a certain event~e.g., an
image of environment! recorded in the structure of the syn
aptic connections between multiple SNs and a single
during learning?~ii ! What kind of the cooperative dynamic
forces individual PCs to fire sequentially, which would co
respond to a specific route~a sequence of scenes! in the
environment?~iii ! How complex should this network be t
store a certain number of different episodes without mix
different events or storing spurious episodes?

Let us discuss the learning objectives which would lead
formation of the sequential SSM. The first objective is
learn a projection map: as a result of unsupervised learn
the image of a particular environment~snapshot! encoded by
heightened activity of the group of SNs leads to the heig
ened activity~firing! of just one PN~see Fig. 1!. The second
objective is to learn the temporal sequence of images. T
can be achieved by modifying inhibitory connections amo
PNs due to long-term potentiation~see, e.g., Ref.@6#!. The
resulting structure of the phase space for the PN layer
exhibit features of the winnerless competition@8#. After the
learning is completed, the neural network should be able
reproduce a specific route following a starting pattern.

The two-layer structure of the SSM model is reminisce
of the projection network implementation of thenormal form
projection algorithm~NFPA! @9#. In that model, the dynam
©2003 The American Physical Society05-1
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ics of the network is cast in terms of the normal form equ
tions which are written for amplitudes of certain norm
forms which correspond to different patterns stored in
system. The normal form dynamics can be chosen to fol
certain dynamical rules, for example, in Ref.@9# it was
shown that a Hopfield-type network with improved capac
can be built using this approach. Furthermore, in Ref.@9# it
was proposed that specific choices of the coupling matrix
the normal form dynamics can lead to multistability amo
more complex attracting sets than simple fixed points, s
as limit cycles or even chaotic attractors. As we will s
below, the model of SSM after learning is completed can
viewed as a variant of the NFPA withm specific choice of
normal form dynamics corresponding to the winnerless co
petition among different patterns.

Consider a two-level network ofNs SN xi andNp princi-
pal neuronsai . Similar to the projection network model@9#,
we assume that sensory neurons do not have their own
namics and are slaved to either external stimuli in the lea
ing ~or storing! regime, or to the PNs in the retrieval regim
In the learning regime,xi5I i where $I i% is a binary input
pattern consisting of 0’s and 1’s. During the retrieval pha
xi5( j 51

Np Pi j aj , wherePi j is the Ns3Np projection matrix
of connections between SNs and PNs.

The PNs are driven by SNs during the learning phase,
they also have their own dynamics controlled by inhibito
interconnections~see above!. After the learning is finished
the direct driving from SNs is disconnected. The equatio
for the amplitudes of PNs,ai , read

ȧi5ai2ai (
j 51

Np

Vi j aj1aai (
j 51

Ns

Pi j
T xj1j~ t !, ~1!

whereaÞ0 in the learning phase, anda50 in the retrieval
phase. We use the transposed projection matrixPi j

T assuming
that the coupling between SNs and PNs is bidirectional
symmetric. The last term in the rhs of Eq.~1! represents
small positive external perturbations which we model

FIG. 1. The strengths of the connection coefficients between
sensory and the principal layers~a! and within the principal layer
~b!. Parameters of simulations:Ns5588, Np510, a51, b52.5,
V150.9, e50.01, s51024, t5480.
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white noise uniformly distributed between 0 ands, however,
in reality it can represent input signals from other parts of
brain which control learning and retrieval dynamics.

After a certain pattern is presented to the model, the s
sory stimuli reset the state of the PN layer according to
projection ruleai5( j 51

Ns Pi j
T xj , but thenai change according

to Eq. ~1!.
In addition to the dynamics of SNs and PNs during lea

ing and retrieval phases, we need to introduce two learn
processes:~i! forming the projection matrixPi j which is re-
sponsible for connecting a group of sensory neurons of
first layer corresponding to a certain stored pattern to a sin
principal neuron which represents this pattern at the
level; ~ii ! learning of the competition matrixVi j which is
responsible for the temporal~logical! ordering of the sequen
tial memory.

Projection matrix. The slow learning dynamics of the pro
jection matrix is controlled by the following equation

Ṗi j 5eai~bxj2Pi j !. ~2!

with e!1. We assume that initially allPi j connections are
nearly identicalPi j 511h i j , where h i j are small random

perturbations,( jh i j 50, ^h i j
2 &5h0

2!1. Additionally, we as-
sume that initially matrixVi j is purely competitive:Vii 51
andVi j 5V0.1 for iÞ j .

Consider a scenario when we want to ‘‘memorize’’ a ce
tain patternA in our projection matrix. We apply a set o
inputsAi corresponding to the patternA to the SNs. As be-
fore, we assume that external stimuli render the SNs in
of two states: excited (Ai51) and quiescent (Ai50). The
initial state of the PN layer is fully excited@ai(0)
5( j Pi j Aj #. According to the competitive nature of intera
tion of PNs after a short transient, only one of them~neuron
A! which corresponds to maximumai(0) remains excited
and others become quiescent~inhibited!. Which neuron be-
comes ‘‘responsible’’ for the patternA is actually random, as
it depends on the initial projection matrixPi j . As it follows
from Eq. ~2!, for small e ‘‘synapses’’ of suppressed PNs d
not change, whereas synapses of the~single! excited neuron
evolve such that the connections between excited SNs
PNs neurons amplify towardsb.1, and connection betwee
excited PNs and quiescent SNs decay to zero@see Fig. 1~a!#.
As a result, the first input pattern will be ‘‘recorded’’ in on
of the rows of the matrixPi j , while other rows will remain
almost unchanged.

Now suppose that we want to record a second pat
different from the first one. We can repeat the proced
described in the preceding paragraph, namely, apply exte
stimuli ~patternB! to the SNs, ‘‘project’’ them to the initial
state of the PN layer@ai(0)5( j Pi j Bj #, and let the system
evolve. Since synaptic connections from SNs suppresse
the first pattern to neuronA have been eliminated, a new s
of stimuli corresponding to patternB will excite neuronA
weaker than most of the others, and competition will lead
selection of one principal neuronB differentfrom neuronA.
In such a way we can record as many patterns as there
PNs.

e
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Competition matrix. The sequential order of patterns r
corded in the projection network is determined by the co
petition matrix Vi j . Initially it is set to Vi j 5V0.1 for i
Þ j andVii 51 which corresponds to winner-take-all comp
tition. The goal of sequential spatial learning is to record
transition of patternA to patternB in the form of suppressing
the competition matrix elementVBA . The slow dynamics of
the nondiagonal elements of the competition matrix are c
trolled by the delay-differential equation

V̇i j 5eai~ t !aj~ t2t!~V12Vi j !. ~3!

As seen from Eq.~3!, only the matrix elements correspon
ing to ai(t)Þ0 andaj (t2t)Þ0, are changing towards th
asymptotic valueV1,1 corresponding to the desired trans
tion. Since most of the time~except for short transients! only
one of the principal neurons is excited, only one of the c
nectionsVi j is changing at any time@see Fig. 1~b!#. As a
result, an arbitrary~nonrepeating! sequence of patterns ca
be recorded. If, after a series of nonrepeating patterns,
show the first pattern again, the ‘‘loop’’ of heteroclinic co
nections will be closed and the system will be able to rep
duce a repeating sequence of patterns in a cyclic manne

If the dimension of the secondary layerNs permits, it is
easy to record into the network more than one sequenc
patterns. To avoid a spurious connection between the
quences, the time interval between the last pattern of the
sequence and the first pattern of the second sequence s
be greater thant.

In Fig. 1 we show the simulation results for a slow d
namics of weightsPi j and Vi j during a learning phase in
network with 588 sensory and 10 principal neurons fore
50.01. As stored patternsI i we take ten digits 0, . . . ,9 rep-
resented as 21328 pixel dithered images. Two loop se
quences of patterns have been presented: ‘‘0,’’ ‘‘1,’’ ‘‘2,’’ an
‘‘6,’’ ‘‘7,’’ ‘‘8,’’ ‘‘9.’’ Note that these images are not precisely
orthogonal to each other, and yet the system is able to a
ciate them to different PNs. While a certain pattern is p
sented to the SN layer, certain matrix coefficientsPi j decay,
some other~connecting excited neurons of the sensory la
and a single excited neuron of the PN layer! approach 2.5
and remaining connections remain almost unchanged. Aft
switch from one pattern to the next in a sequence the co
sponding matrix coefficientVi j decays to a low valueV1
50.9.

Now, presenting a test patternT ‘‘resembling’’ one of the
recorded patterns to the sensory layer@xi(0)5T( i ), ai(0)
5( i Pi j

TTj ], will initiate a periodic sequence of pattern
corresponding to the previously recording sequence reco
in the network. Figure 2~a! shows the behavior of the prin
cipal neurons after two different initial patterns have be
presented, one resembling digit ‘‘0’’ and another resembl
digit ‘‘6.’’ In both cases, the system quickly settled onto
cyclic generation of patterns associated with a given test
tern. At any given time except for a short transient tim
between the patterns, only a single principal neuron is ‘‘o
which corresponds to a particular pattern. The order in wh
the principal neurons are turned on is completely determi
by the structure of the WLC matrixVi j . The duration of each
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‘‘state’’ is determined by the magnitude of external perturb
tions s. For s50, the system would asymptotically ap
proach the separatrices and so the durations of each
would grow indefinitely. For a finites, the duration of each
state scales as2 ln s.

In the above example, patterns are retrieved from the s
tial memory periodically in time. However, it may be des
able for a system to be able to control the duration of in
vidual patterns in the sequence. This can be easily achie
by modulating the overall strength of inhibitory connectio
Vi j 1D(t). While D(t).12V1, all fixed points are stable
nodes, and so a single principle neuron keeps firing. In or
to advance to the next pattern,D(t) is suppressed to zero fo
a short period of time@O(2 ln s)#. An example of such non-
periodic retrieval of images is shown in Fig. 2~b!.

In conclusion, we introduced a principle of operation f
the sequential memory which is based on the winnerl
competition and illustrated it in the model of the sequen
spatial memory in hippocampus. It is embodied in the tw

FIG. 2. Amplitudes of principal neurons during the memo
retrieval phase,~a! periodic retrieval, two different test patterns pr
sented,~b! aperiodic retrieval with modulated inhibition. Param
eters of simulations are the same as in Fig. 1.
5-3
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layer neuronal structure with the first layer serving as a s
sory input for the second layer which performs winnerle
competition among representative principal neurons. We
troduced the learning rules for the projection and the com
tition matrices which lead naturally to the desired function
the network. We also demonstrated that external pertu
tions can influence the timing of the transitions among
stored patterns, however, the sequence of patterns is ro
against external perturbations. The model can operate in
regimes: externally timed switching controlled by glob
modulation of inhibitory connections and spontaneous p
odic switching between patterns. The latter can be relev
e

ur
o,
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for route replays during sleep. Of course, our model o
describes a generic mechanism of sequential memory, in
biological systems neurons generate nonstationary s
trains and synaptic dynamics is time dependent~see Refs.
@7,10#!. Moreover, instead of a single PN a given pattern c
be represented by a group of neurons which would incre
the structural stability of the memory. All these generaliz
tions will be addressed in our future work.
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